Explore and learn with me

This platform is a clean space to explore technology, understand real concepts, and learn through practice. Everything here is built to help you improve step by step.

Learn
Take tests
Ask questions
Find code examples
Python basics Databases & authentication Automations Prompt engineering Web development basics Real projects
Today in Tech

Automate Python Manual Extraction: Build End-to-End PDF -> LLM -> SQL Flows with CocoIndex, Ollama, and Postg…

Fresh AI, programming and Big Tech news. Scrollable decks, neon accents — maximum focus with minimal scrolling.

• Warsaw Edition
AI — Latest Models & Research
AI
Automate Python Manual Extraction: Build End-to-End PDF -> LLM -> SQL Flows with CocoIndex, Ollama, and Postgres
Overview We'll demonstrate an end-to-end data extraction pipeline, engineered for full...
DEV Community
AI
The Universal Weight Subspace Hypothesis
We show that deep neural networks trained across diverse tasks exhibit remarkably similar low-dimensional parametric subspaces. We provide the first large-scale empirical evidence that demonstrates that neural networks systematically converge to shared spectral subspaces regardless of initialization, task, or domain. Through mode-wise spectral analysis of over 1100 models - including 500 Mistral-7
arXiv
AI
Value Gradient Guidance for Flow Matching Alignment
While methods exist for aligning flow matching models--a popular and effective class of generative models--with human preferences, existing approaches fail to achieve both adaptation efficiency and probabilistically sound prior preservation. In this work, we leverage the theory of optimal control and propose VGG-Flow, a gradient-matching-based method for finetuning pretrained flow matching models.
arXiv
AI
Deep infant brain segmentation from multi-contrast MRI
Segmentation of magnetic resonance images (MRI) facilitates analysis of human brain development by delineating anatomical structures. However, in infants and young children, accurate segmentation is challenging due to development and imaging constraints. Pediatric brain MRI is notoriously difficult to acquire, with inconsistent availability of imaging modalities, substantial non-head anatomy in th
arXiv
AI
DraCo: Draft as CoT for Text-to-Image Preview and Rare Concept Generation
Recent unified multimodal large language models (MLLMs) have shown impressive capabilities, incorporating chain-of-thought (CoT) reasoning for enhanced text-to-image generation. However, existing approaches remain limited, either treating the model merely as a standalone generator or relying on abstract textual planning. To this end, we propose Draft-as-CoT (DraCo), a novel interleaved reasoning p
arXiv
AI
ShadowDraw: From Any Object to Shadow-Drawing Compositional Art
We introduce ShadowDraw, a framework that transforms ordinary 3D objects into shadow-drawing compositional art. Given a 3D object, our system predicts scene parameters, including object pose and lighting, together with a partial line drawing, such that the cast shadow completes the drawing into a recognizable image. To this end, we optimize scene configurations to reveal meaningful shadows, employ
arXiv
AI
NeuralRemaster: Phase-Preserving Diffusion for Structure-Aligned Generation
Standard diffusion corrupts data using Gaussian noise whose Fourier coefficients have random magnitudes and random phases. While effective for unconditional or text-to-image generation, corrupting phase components destroys spatial structure, making it ill-suited for tasks requiring geometric consistency, such as re-rendering, simulation enhancement, and image-to-image translation. We introduce Pha
arXiv
AI
Semantic Soft Bootstrapping: Long Context Reasoning in LLMs without Reinforcement Learning
Long context reasoning in large language models (LLMs) has demonstrated enhancement of their cognitive capabilities via chain-of-thought (CoT) inference. Training such models is usually done via reinforcement learning with verifiable rewards (RLVR) in reasoning based problems, like math and programming. However, RLVR is limited by several bottlenecks, such as, lack of dense reward, and inadequate
arXiv
AI
TV2TV: A Unified Framework for Interleaved Language and Video Generation
Video generation models are rapidly advancing, but can still struggle with complex video outputs that require significant semantic branching or repeated high-level reasoning about what should happen next. In this paper, we introduce a new class of omni video-text models that integrate ideas from recent LM reasoning advances to address this challenge. More specifically, we present TV2TV, a unified
arXiv
AI
Structured Document Translation via Format Reinforcement Learning
Recent works on structured text translation remain limited to the sentence level, as they struggle to effectively handle the complex document-level XML or HTML structures. To address this, we propose \textbf{Format Reinforcement Learning (FormatRL)}, which employs Group Relative Policy Optimization on top of a supervised fine-tuning model to directly optimize novel structure-aware rewards: 1) Tree
arXiv
AI
SA-IQA: Redefining Image Quality Assessment for Spatial Aesthetics with Multi-Dimensional Rewards
In recent years, Image Quality Assessment (IQA) for AI-generated images (AIGI) has advanced rapidly; however, existing methods primarily target portraits and artistic images, lacking a systematic evaluation of interior scenes. We introduce Spatial Aesthetics, a paradigm that assesses the aesthetic quality of interior images along four dimensions: layout, harmony, lighting, and distortion. We const
arXiv
AI
Foundations of Diffusion Models in General State Spaces: A Self-Contained Introduction
Although diffusion models now occupy a central place in generative modeling, introductory treatments commonly assume Euclidean data and seldom clarify their connection to discrete-state analogues. This article is a self-contained primer on diffusion over general state spaces, unifying continuous domains and discrete/categorical structures under one lens. We develop the discrete-time view (forward
arXiv
Elvin Babanlı
online • quick replies
×
Hi! I’m Elvin. Ask me anything about projects, stack, or your tasks.